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The dynamics of interacting Brownian particles 
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Royal Radar Establishment, Malvern, Worcestershire WR14 3PS, UK 

Received 28 April 1975 

Abstract. The dynamics of Brownian particles in dilute dispersions interacting through a 
long-range repulsive potential are considered. Emphasis is on interpretation of recent light 
scattering photon correlation measurements on such a system. It is shown that the initial 
decay of the temporal correlation function F ( K ,  r) of the Kth spatial Fourier component of 
particle number density is determined largely by free-particle Brownian motion. The initial 
decay rate of the normalized correlation function is given by D,K*S(K)- '  (Do is the free- 
particle diffusion constant and S ( K )  the static structure factor). The behaviour of F(K,  T) at 
larger correlation delay time T is discussed briefly. 

1 .  Introduction 

Recent light scattering experiments (Brown et al 1975) have revealed some interesting 
dynamical effects in a system of Brownian particles interacting through a strong, repul- 
sive, shielded Coulombic potential. The experiments were performed under conditions 
where the mean interparticle spacing was comparable to the wavelength of light. The 
static structure factor S(K) ,  determined from measurements of the angular dependence 
of the mean scattered intensity, showed peaks indicating considerable spatial ordering 
of the particles due to the interaction. From photon correlation measurements it was 
found that the effective diffusion coefficient, obtained from the initial decay of the 
normalized temporal correlation function of the Kth spatial Fourier component of the 
particle concentration, mirrored the behaviour of S(K) .  That is, in the regions of the 
peaks of S ( K )  the effective diffusion coefficient, and hence the initial decay rate of the 
concentration correlation function, was small whereas at small K ,  where S ( K )  < 1, the 
effective diffusion coefficient was large. The primary aim of this paper is to give a 
theoretical explanation of these observations. 

We start by introducing the necessary notation and providing a more quantitative 
description of the experimental observations (for further details, see Brown et a/ 1975). 
Photon correlation spectroscopy provides a measurement of the modulus of the 
temporal autocorrelation function G(K,  7) of the scattered electrical field. Here 7 is the 
correlation delay time and K (  I ( 4 4 4  sin(8/2)) is the magnitude of the scattering vector 
K, A being the wavelength of light in the system of interest and 0 the scattering angle. 
For N identical spherical particles IG(K, t)l is given by 

where M is the particle mass, B is a constant for a given experiment, P ( K )  is the single 
particle scattering factor and F ( K ,  7) is the correlation function of the Kth spatial 
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Fourier component of the concentration or particle number density 
N N  

F ( K , ~ )  = N - ’  1 1 (exp[i~.(r,(t)-rrj(t+t))]>. 
i = 1  j = 1  

Here r i t )  is the position of the centre of particle i at time t, and the angular brackets 
indicate an ensemble average. (In the neutron scattering literature F ( K ,  t) is frequently 
called the coherent intermediate scattering function.) From equation (1) it is seen that 
the normalized field correlation function /g(l)(K, r)l, the quantity most easily obtained 
from photon correlation measurements, is equal to the normalized concentration 
correlation function : 

where we have used the definition of the static structure factor : 

S ( K )  = F(K,  0). (4) 

For non-interacting systems, S ( K )  = 1 and 

F ( K ,  t) = exp( - D o K 2 r )  ( 5 )  

where, for spherical particles, the translational diffusion coefficient Do is given by the 
Stokes-Einstein relation : 

Here k is the Boltzmann constant, T the absolute temperature, f ( 3  6rcqR) the particle 
frictional coefficient, q the solvent viscosity and R the particle radius. The experimental 
observations of Brown et a1 for an interacting system are summarized in the equations : 

Here Deff is the effective diffusion coefficient referred to above. The quantitative meaning 
of ‘small t’ will be given in 4 2. 

In 0 2, by making several apparently reasonable assumptions, the result of equa- 
tions (7) and (8) is derived from equation (2). In particular it is assumed that the 
instantaneous velocity of a particle can be written as the sum of two components, a 
rapidly fluctuating Brownian component arising from particle-solvent molecule inter- 
actions, and a slowly fluctuating ‘drift velocity’ component due to  the interparticle 
interactions. It is then shown that, to a good approximation, the initial decay of F ( K ,  t) 
is determined solely by the Brownian components of particle velocities. In 4 3 the result 
is discussed. The relationship between this work and the phenomenon of ‘de Gennes 
narrowing’, familiar in the field of coherent quasi-elastic neutron scattering by simple 
fluids, is briefly explored. A brief discussion is also given of the expected behaviour of 
F ( K ,  t) at longer correlation delay times. 
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At points in 8 2 it will be useful to base the discussion on specific numerical values 
for certain quantities. For convenience we will take these values to be roughly those of 
the experiments of Brown et al. These are listed in table 1. The relevance of the various 
quantities will become apparent. 

Table I .  Typical values of parameters for dispersion of Brownian particles (Brown er al 1975). 

Parameter Symbol Value 

Particle radius R 250 A 
Particle mass M - 6 . 9 ~  IO-''g 
Volume fraction -= 10-3 
Mean interparticle separation -5OooA 
Frictional coefficient f( 6rr17R) - 4 . 7 ~  IO- '  gs-1 a 

Velocity relaxation time rB (= M / f )  1.5 x lo-'' s 
Particle diffusion coefficient Do = ( k T / f )  -8.6 x I O - *  cm* s- ' ' 

a Viscosity of water at 20°C % I cP. 
b From Langevin theory of Brownian motion (see various articles in Wax 1954). 
c T = 20°C. 

It should be emphasized that in this paper we consider only a two-component system, 
that is a system of interacting particles dispersed in a fluid medium. Of course, for 
charged particles, a third component, the counter ions, is present and it is possible that 
counter ion motions may affect the particle motions. This has been discussed elsewhere 
(Brown et al 1975, 9 5.3.2) and will not be further pursued here. In this work it is 
assumed that the dominant role of the counter ions is in determining the form of the 
interparticle potential. 

2. Theory 

Starting from equation (2) we will derive the results of equations (7) and (8). Without loss 
of generality the scattering vector K may be assumed to be in the x direction. Since we 
are interested in the initial time dependence of F ( K ,  z), we differentiate equation (2) with 
respect to delay time T : 

-- dF(K' ') - - IKN-' E E (K(t  +T) exp[iK(x,(t) - x j t  + ?))I) 
dr i j  

(9) 

where x j t )  is the x component of r j r )  and y(r) dxjr)/dt is the x component of the 
instantaneous velocity of particle j .  Equation (9) is re-arranged using the stationarity 
condition (see eg Egelstaff 1967, p 134), 

~- dF(K' ') = 0 = iKN-'  ( (<( t ) -  r / ; ( r+z))  exp[iK(xi(t)-.uj(t+?))]) 
dt i j  

to give 

-- dF(K, 5 )  - -iKN-'  E 1 (~(r)exp[ iK( .u i (r ) -xj t+~)) ] ) .  
dr i j  
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The identity 

leads to 

-- W K ,  7 )  - -iKN-’ 1 (v(t) exp[iK(x,(t)-xjt))] exp( - i K J f + T  VJt’) dt‘)). 
dr i i  

For delay times 7 short enough that 

K J: y{t‘) dt’ << 1, 

we keep only the first two terms in an expansion of the last exponential in equation (10). 
Thus 

-1 d t  s m a ~ ~ r  = - K 2 N - ’  ~ ~ ~ ~ d t ( ~ ( O ) ~ { t ‘ ) e x p [ i K ( x i ( 0 ) - - . x , { O ) ) ] )  (12) 

where, because of stationarity, the explicit dependence on t has been dropped from the 
notation. In obtaining equation (12) we have also used the fact that particle positions 
and velocities are uncorrelated when taken at the same time. 

To proceed further we must consider the physics of the situation of current interest. 
Consider first a dilute dispersion of spherical particles (volume fraction < say) in 
the absence of interactions other than the hard-sphere interaction. Aside from the small 
excluded-volume effect, a particle can take up any spatial position without inter- 
ference from other particles. Due to collisions with the solvent molecules the particles 
will execute virtually independent Brownian motions, the average kinetic energy of 
each particle being given by equipartition : 

$ M ( V 2 )  = 3kT. (13) 
Consider now ‘turning on’ a repulsive interaction between the particles. Little effect 
will be felt until the typical energy of interaction between a pair of particles becomes 
comparable to the thermal energy kT. For interaction energies much greater than kT 
a given particle will tend to keep as far away as possible from other particles leading to 
spatial ordering and consequent peaks in the radial distribution function g ( r )  and the 
structure factor S(K). In this situation the particle will tend to ‘sit’ within a few kT of 
the minimum of the instantaneous potential well created by its neighbours. Two types 
of force will thus act on a particle. 

(i) A rapidly fluctuating ‘Brownian’ force due to collisions with the solvent molecules. 
(ii) An ‘interaction’ force F,, the resultant force on a particle due to the instan- 

taneous configuration of its neighbours. This force will have a much longer charac- 
teristic fluctuation time zI,  roughly the time taken for the relative positions of a particle 
and its neighbours to change by a significant fraction of the mean interparticle spacing. 
For the typical parameters given in table 1 we calculate this latter time to be of the order 
of the time taken by a particle to diffuse, say, 1000 A, ie r ,  ‘v (10-5)2/600 = 200 ps. 

The particle velocity may similarly be considered to be composed of a Brownian 
component V, arising from the Brownian force and an interaction component V,. 
Since the fluctuation time T~ of the interaction force is much greater than the velocity 
relaxation time T*( M / f )  z 1.5 x 10- l o  s (table l), will be related to Fl through the 
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‘drift velocity’ equation 

W) = w/f: 
The order of magnitude of ( V : )  can be estimated by assuming that the potential felt 
by a particle typically changes by kT in, say, 500 A. Thus 

( V : )  1 (kT/5  x 10-6f)2 2: 3 x cm2 s-’. 

By equipartition of energy (equation (13)), however, the total velocity has mean-square 
value k T / M  ‘v 6 x lo2 cm2 sK2. Thus 

( V i >  >> (C>. (14) 
(The preceding discussion is very similar to that given by Ermak and Yeh (1974), when 
considering the effects, not considered here, of counter ion motions on macro-ion motion.) 

The last two paragraphs may be summarized by writing the particle velocity as the 
sum of two components : 

v(f) = vBj(t)+ & i ( f ) .  (15) 

The Brownian component VBi(t) has a large mean-square value and fluctuates rapidly 
with characteristic time 58. The interaction component has a small mean-square value 
and fluctuates relatively slowly. Two further properties of these velocity components 
are assumed. (i) Since the Brownian components are determined by solvent-particle 
interactions, it is expected that in dilute dispersions 

( vBi(o)VB,(r)> = ai j (  vBi(o)Vf3i(T)>. (16) 

(vBi(o)v,(s)> = for all i , j  and t .  (17) 

(ii) It is also expected that there will be no correlation between VBi and F j ,  ie 

Substituting equation (15) into equation (12), using equations (16) and (17), 

dF(K, ~ ) l  

x exp[iK(.xi(0) - .uj(0))]).  (18) 
Now photon correlation spectroscopy is at present limited by instrumental considera- 
tions to delay times greater than lO-’s, much greater than T~ but still considerably 
smaller than T ~ .  We therefore evaluate equation (18) for t g  << T << tl, where, by virtue 
of equation (14), the second term can be neglected. The initial decay of F(K,r), as 
measured by photon correlation spectroscopy, is thus given by 

The final step in the analysis comes from noting that the integral in equation (19) is, at  
least for dilute dispersions, equal to the free-particle translational diffusion coefficient 
Do (see eg Kubo 1966, equation (2 .5)) .  Thus 
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Using equation (3), equation (20) can be written in normalized form: 

(21) 

which is the result of equations (7) and (8) (see also equation (30) of Brown er al 1975). 
Note that T is still subject to the restriction of equation (11). 

3. Discussion 

Equation (20) shows that the initial decay rates of the Fourier components of the con- 
centration fluctuations are determined by the independent Brownian diffusion of the 
particles, regardless of the magnitude S ( K )  of the Fourier component in question. This 
initial decay is thus independent of any interaction. However, the typical time taken 
for a Fourier component to decay to a given fraction of its initial value is given by the 
decay rate of the normalized correlation function (equation (21)). Here the interaction 
enters through normalization by the static structure factor S(K),  and large fluctuations, 
for values of K corresponding to the peaks of S(K) ,  will take longer to decay than small 
fluctuations. 

The result of equation (21) is reminiscent of the so called ‘de Gennes narrowing’ of 
the quasi-elastic energy spectrum (the temporal Fourier transform of F ( K ,  5)) of neutrons 
coherently scattered by simple fluids in the region of the peaks of S ( K )  (de Gennes 1959, 
see also Skold 1967, Venkataraman et a1 1967). Both de Gennes narrowing and the 
phenomenon described in this paper are due to the fact that the initial decay of F ( K ,  7) 

for a system of interacting particles is determined by free-particle motion. Neutron 
scattering is sensitive to motions on timescales down to about s, shorter than the 
relaxation time rB of the velocity autocorrelation function, and the short-time free- 
particle motion is thus the rectilinear motion of a perfect gas. As pointed out in $2, 
photon correlation spectroscopy is limited to times long compared to rB and the free- 
particle motion is Brownian diffusion. The result of de Gennes, 

S ( K ) -  1 dZF(K, TI1 - k T K 2  
dr2 r - rO  S(K)M 

-- 

follows from evaluating equation (12) as t --$ 0 and applying equipartition of energy 
(equation (1 3)). 

In this paper, as in the experimental work of Brown et al, emphasis has been on the 
initial decay of F ( K ,  r ) .  We now make a few tentative comments concerning its expected 
behaviour at larger 5. The derivative of F(K, r )  can be expressed by the non-local 
relationship, 

where the ‘memory function’ M ( K ,  t )  is related to the correlation function of the flux 
of particles and hence to the particle velocities (see eg Zwanzig 1961, Mori 1965, Berne 
et a1 1966, equations (20) and (21), Pike 1974, equations (84) and (72)). From the discus- 
sion given in Q 2, we can expect M ( K ,  t )  to have components decaying on the widely 
differing timescales tB and rI (see, also, Mountain 1974). For correlation delay times 
r >> tI, M ( K ,  t - t )  is essentially local in time, and equation ( 2 2 )  predicts a single- 
exponential decay for F ( K ,  7). (Although not explicitly stated in their paper, this appears 
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to be the regime considered by Schaefer and Berne (1974).) This prediction is fulfilled by 
the experimental observations (Brown er all975, figure 7). In this regime, the decay rate 
of the exponential will be a complicated function of the interaction. For correlation 
delay times in the range T~ << T 5 T ~ ,  the exact structure of the interaction component of 
M ( K ,  t )  will be important in determining the (non-single-exponential) shape of F ( K ,  5 ) .  

When further experimental data become available it should be possible to construct an 
empirical expression for M ( K ,  t). Ideally one would like to calculate M ( K ,  t) from first 
principles, though, as pointed out by Schaefer and Berne, theoretical complications are 
discouraging. 

It is seen from inspection of equation (2) that, whatever the structure of F ( K ,  T), its 
characteristic decay time T, is roughly the time taken for the distance between a pair of 
particles to change by 1/K. For large enough K ,  T, will be small compared to T, and 
F ( K ,  T) should have the free diffusional structure of equation (5 ) .  The data of Brown er al 
did not extend fully into this region of K ,  though a tendency towards the single- 
exponential behaviour of equation ( 5 )  was noted for large K .  For small enough K 
where T,  >> T ~ ,  F(K,  t) should have predominantly the single-exponential behaviour 
discussed in the previous paragraph and it may be difficult to observe the initial decay 
predicted by equation (21). 

It should be mentioned that the treatment given above can also be applied to the 
self-correlation function FJK,  T),  the diagonal (i = j )  part of F(K,  T )  (equation (2)), which 
describes single-particle motions. Thus the initial decay of F,(K, T) is given by equation 
(20). However, since F,(K,O) 3 1, there should, for the self-term, be no ‘narrowing’ 
effect in the region of the peaks of S(K) .  For large T the interaction components &(t )  

of velocity will contribute to the decay of F s ( K , ~ ) .  Thus we can expect interacting 
Brownian particles to show two self-diffusion coefficients : a free-particle coefficient Do 
at short times Tg << T << tI, and, at longer times T >> T , ,  a coefficient dependent on the 
interaction. Unfortunately it is not easy to measure FJK, T )  for an interacting system 
by light scattering. 

In conclusion, we have considered the dynamics of Brownian motion of a dilute 
dispersion of particles interacting through a long-range repulsive potential. It seems 
likely that the ideas put forward in this paper will apply to Brownian motion in a wider 
class of interacting systems, including, perhaps, solutions of simple electrolytes and 
certain macromolecular solutions. 
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